Exact solutions of multi-component nonlinear Schrödinger and Klein-Gordon equations in twodimensional space-time

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 344281
(http://iopscience.iop.org/0305-4470/34/20/302)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.95
The article was downloaded on 02/06/2010 at 08:58

Please note that terms and conditions apply.

Exact solutions of multi-component nonlinear Schrödinger and Klein-Gordon equations in two-dimensional space-time

Asao Arai
Department of Mathematics, Hokkaido University, Sapporo, 060-0810, Japan
E-mail: arai@math.sci.hokudai.ac.jp

Received 5 March 2001

Abstract

We present some exact solutions of a multi-component nonlinear partial differential equation which unifies nonlinear Schrödinger and Klein-Gordon equations in the two-dimensional space-time.

PACS numbers: 0365P, 0540, 1130P, 0230J, 0420J

1. Introduction

In this paper we consider the following nonlinear partial differential equation for a C^{N}-valued function:

$$
\Psi(x, t)=\left(\Psi_{1}(x, t), \ldots, \Psi_{N}(x, t)\right)
$$

on the two-dimensional space-time $\boldsymbol{R}^{2}=\{(x, t) \mid x, t \in \boldsymbol{R}\}(N \geqslant 1)$:
$\mathrm{i} \alpha \frac{\partial \Psi(x, t)}{\partial t}+\beta \frac{\partial \Psi(x, t)}{\partial x}+\gamma \frac{\partial^{2} \Psi(x, t)}{\partial t^{2}}+\frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}$

$$
\begin{equation*}
+\rho \Psi(x, t)+\kappa|\Psi(x, t)|^{2 p} \Psi(x, t)=0 \tag{1.1}
\end{equation*}
$$

where $\alpha, \beta, \gamma, \rho, \kappa \in \boldsymbol{C}(\kappa \neq 0), p \in \boldsymbol{R} \backslash\{0\}$ (not necessarily an integer) are constants and $|\Psi(x, t)|:=\sqrt{\sum_{n=1}^{N}\left|\Psi_{n}(x, t)\right|^{2}}$. Equation (1.1) unifies N-component nonlinear Schrödinger and Klein-Gordon equations on \boldsymbol{R}^{2}. The basic idea of the method taken in the present paper comes from a paper [4] which discusses a use of supersymmetric quantum mechanics in constructing soliton-type solutions to a multi-component nonlinear Schrödinger equation on \boldsymbol{R}^{2}

$$
\begin{equation*}
\mathrm{i} \frac{\partial \Phi(x, t)}{\partial t}+\frac{\partial^{2} \Phi(x, t)}{\partial x^{2}}+\kappa|\Phi(x, t)|^{2} \Phi(x, t)=0 \tag{1.2}
\end{equation*}
$$

in the case of (1.1) with $p=1, \alpha=1, \beta=0, \gamma=0, \rho=0$. We pursue this method to find exact solutions of (1.1). In this paper we present exact solutions of (1.1) in the following cases: (i) $N=1, p \in \boldsymbol{R} \backslash\{0,-1\}$ arbitrary; (ii) $N=2, p=1$; (iii) $N=3, p=1$.

2. Preliminaries

We seek solutions $\Psi=\left(\Psi_{1}, \ldots, \Psi_{N}\right)$ of (1.1) in the form of a travelling wave

$$
\begin{equation*}
\Psi_{n}(x, t)=\mathrm{e}^{\mathrm{i} \theta_{n}(x, t)} \psi_{n}(x-v t) \quad n=1, \ldots, N \tag{2.1}
\end{equation*}
$$

where $v \in \boldsymbol{R}$ is a constant,

$$
\begin{equation*}
\theta_{n}(x, t):=\mu_{n} x-\omega_{n} t \tag{2.2}
\end{equation*}
$$

with $\mu_{n}, \omega_{n} \in \boldsymbol{R}$ being constants, and ψ_{n} is a twice continuously differentiable function on \boldsymbol{R}. We assume that μ_{n} and ω_{n} satisfy

$$
\begin{align*}
& \mu_{n}=\frac{1}{2 \mathrm{i}}\left(\mathrm{i} \alpha v-2 \mathrm{i} \omega_{n} v \gamma-\beta\right) \tag{2.3}\\
& 2 \omega_{n} v \operatorname{Im} \gamma=v \operatorname{Im} \alpha+\operatorname{Re} \beta . \tag{2.4}
\end{align*}
$$

We set

$$
\begin{align*}
& a:=1+\gamma v^{2} \tag{2.5}\\
& b_{n}:=\alpha \omega_{n}-\gamma \omega_{n}^{2}-\mu_{n}^{2}+\rho+\mathrm{i} \beta \mu_{n} . \tag{2.6}
\end{align*}
$$

We only consider the case $a \neq 0$.
The following lemma is easily shown.
Lemma 2.1. The function $\Psi:=\left(\Psi_{1}, \ldots, \Psi_{N}\right)$ with Ψ_{n} given by $(2.1)(n=1, \ldots, N)$ is a solution of (1.1) if and only if, for each $n=1, \ldots, N$,

$$
\begin{equation*}
a \frac{\mathrm{~d}^{2} \psi_{n}(x)}{\mathrm{d} x^{2}}+\kappa\left(\sum_{j=1}^{N}\left|\psi_{j}(x)\right|^{2}\right)^{p} \psi_{n}(x)+b_{n} \psi_{n}(x)=0 \tag{2.7}
\end{equation*}
$$

By lemma 2.1, the problem is reduced to finding solutions $\left(\psi_{1}, \ldots, \psi_{N}\right)$ of equation (2.7).

3. The case $N=1$

In this case we set

$$
\begin{equation*}
\theta(x):=\theta_{1}(x) \quad b:=b_{1} . \tag{3.1}
\end{equation*}
$$

A well known exact solution of (2.7) in the case $N=1$ and $p=1$ is given by $f_{1}(x):=$ $\sqrt{2 a / \kappa} \operatorname{sech}(x)$ with the condition $a+b=0$, so that $F_{1}(x, t):=\mathrm{e}^{\mathrm{i} \theta(x, t)} f_{1}(x-v t)$ is a solution to equation (1.1) with $N=1, p=1$ and $a+b=0$. We present other exact solutions of equation (1.1).

We try to find solutions of (2.7) with $N=1$ in the form

$$
\begin{equation*}
\psi(x)=c \mathrm{e}^{\phi(x)} \tag{3.2}
\end{equation*}
$$

where $c \neq 0$ is a constant. By direct computation, ψ is a solution of (2.7) with $N=1$ if and only if

$$
\begin{equation*}
a\left(\phi^{\prime \prime}(x)+\phi^{\prime}(x)^{2}\right)+\kappa|c|^{2 p} \mathrm{e}^{2 p \phi(x)}+b=0 \tag{3.3}
\end{equation*}
$$

It is not so hard to find solutions of (3.3) [2, appendix]. We only present results on solutions of (3.3).

Let $c \neq 0$ be a complex constant and C be a real constant. We introduce a function g_{p} on \boldsymbol{R} by

$$
g_{p}(y):= \begin{cases}-\frac{\kappa|c|^{2 p}}{a(1+p)} \mathrm{e}^{2 p y}+C \mathrm{e}^{-2 y}-\frac{b}{a} & p \neq-1 \tag{3.4}\\ \left(C-\frac{2 \kappa}{|c|^{2} a} y\right) \mathrm{e}^{-2 y}-\frac{b}{a} & p=-1, \quad y \in \boldsymbol{R} .\end{cases}
$$

Proposition 3.1. Let G_{p} be a primitive function of either $1 / \sqrt{g_{p}}$ or $-1 / \sqrt{g_{p}}$ on

$$
\begin{equation*}
D_{+}:=\left\{y \in \boldsymbol{R} \mid g_{p}(y)>0\right\} \tag{3.5}
\end{equation*}
$$

and G_{p}^{-1} denote the inverse function of G_{p}.
(i) For every open interval $J \subset D_{+}$,

$$
\begin{equation*}
\Psi(x, t):=c \mathrm{e}^{\mathrm{i} \theta(x, t)} \mathrm{e}^{G_{p}^{-1}(x-v t)} \tag{3.6}
\end{equation*}
$$

is a solution of equation (1.1) with $N=1$ on $\left\{(x, t) \mid x-v t \in G_{p}(J)\right\}$.
(ii) Suppose that there exists an open interval $J \subset D_{+}$such that $G_{p}(J)=(0, L)$ with $L>0$ or $L=\infty$ and

$$
\begin{equation*}
G_{p}^{-1}(0):=\lim _{x \downarrow 0} G_{p}^{-1}(x) \text { exists and } g_{p}\left(G_{p}^{-1}(0)\right)=0 \tag{3.7}
\end{equation*}
$$

Let

$$
\phi_{p}(x):= \begin{cases}G_{p}^{-1}(x) & x \in[0, L) \tag{3.8}\\ G_{p}^{-1}(-x) & x \in(-L, 0)\end{cases}
$$

Then

$$
\begin{equation*}
\Psi(x, t):=c \mathrm{e}^{\mathrm{i} \theta(x, t)} \mathrm{e}^{\phi_{p}(x-v t)} \tag{3.9}
\end{equation*}
$$

is a solution to equation (1.1) with $N=1$ on $\{(x, t) \mid x-v t \in(-L, L)\}$.

Proof. (i) It is straightforward to check that $\phi(x)=G_{p}^{-1}(x)$ is a solution of equation (3.3). (ii) Similar to part (i).

Some solutions given in proposition 3.1 may be global in (x, t) and have explicit representations. To write down some of them, we recall q-deformed hyperbolic functions which were introduced in [1]:

$$
\begin{align*}
& \sinh _{q} x:=\frac{\mathrm{e}^{x}-q \mathrm{e}^{-x}}{2} \quad \cosh _{q} x:=\frac{\mathrm{e}^{x}+q \mathrm{e}^{-x}}{2} \tag{3.10}\\
& \tanh _{q} x:=\frac{\sinh _{q} x}{\cosh _{q} x} \quad \operatorname{sech}_{q} x:=\frac{1}{\cosh _{q} x} \quad x \in \boldsymbol{R} \tag{3.11}
\end{align*}
$$

where $q>0$ is a deformation parameter. Note that, if $q \neq 1$, then $\sinh _{q} x$ is not odd and $\cosh _{q} x$ is not even:
$\sinh _{q}(-x)=-q \sinh _{1 / q} x \quad \cosh _{q}(-x)=q \cosh _{1 / q} x \quad x \in \boldsymbol{R}$.
The following formulae can be easily proven:

$$
\begin{align*}
& \left(\sinh _{q} x\right)^{\prime}=\cosh _{q} x \tag{3.13}\\
& \left(\cosh _{q} x\right)^{\prime}=\sinh _{q} x \tag{3.14}\\
& \cosh _{q}^{2} x-\sinh _{q}^{2} x=q \tag{3.15}\\
& \left(\tanh _{q} x\right)^{\prime}=q \operatorname{sech}_{q}^{2} x \tag{3.16}\\
& \left(\operatorname{sech}_{q} x\right)^{\prime}=-\left(\tanh _{q} x\right)\left(\operatorname{sech}_{q} x\right) \tag{3.17}\\
& \tanh _{q}^{2} x=1-q \operatorname{sech}_{q}^{2} x \tag{3.18}
\end{align*}
$$

Theorem 3.2. Let $p \neq 0$. Suppose that $\kappa \in \boldsymbol{R}$ and $s \in \boldsymbol{R}$.

$$
\begin{equation*}
\frac{a(1+p)}{\kappa}>0 \quad b+a s^{2}=0 \tag{3.19}
\end{equation*}
$$

Then the function

$$
\begin{equation*}
\Psi(x, t)=\left(\frac{a(1+p) q s^{2}}{\kappa}\right)^{1 / 2 p} \mathrm{e}^{\mathrm{i} \theta(x, t)} \operatorname{sech}_{q}^{1 / p}[s p(x-v t)] \tag{3.20}
\end{equation*}
$$

is a solution of equation (1.1).
Theorem 3.3. Let $b=2 a s^{2}$ and $a / \kappa<0$. Then

$$
\begin{equation*}
\Psi(x, t)=-s \sqrt{-2 a / \kappa} \mathrm{e}^{\mathrm{i} \theta(x, t)} \tanh _{q} s(x-v t) \tag{3.21}
\end{equation*}
$$

is a solution of equation (1.1) with $N=1$ and $p=1$.

4. Exact solutions in the case $N \geqslant 2$

In this case, we follow an idea in [4]; namely, we try to find a potential $V: \boldsymbol{R} \rightarrow \boldsymbol{R}$ having the following properties (i)-(iii): (i) the one-dimensional Schrödinger operator $-\mathrm{d}^{2} / \mathrm{d} x^{2}+V$ admits N eigenfunctions $\psi_{1}, \ldots, \psi_{N}$ with eigenvalues E_{1}, \ldots, E_{N} respectively:

$$
\begin{equation*}
-\frac{\mathrm{d}^{2} \psi_{n}(x)}{\mathrm{d} x^{2}}+V(x) \psi_{n}(x)=E_{n} \psi_{n}(x) \tag{4.1}
\end{equation*}
$$

(ii) $K:=b_{n}-a E_{n}$ is independent of $n=1, \ldots, N$ and (iii) the eigenfunctions recover the potential V in the sense that

$$
\begin{equation*}
\kappa\left(\sum_{n=1}^{N}\left|\psi_{n}(x)\right|^{2}\right)^{p}+K=-a V(x) \tag{4.2}
\end{equation*}
$$

If such a V exists, then $\left(\psi_{1}(x), \ldots, \psi_{N}(x)\right)$ satisfies (2.7) and hence

$$
\begin{equation*}
\Psi(x)=\left(\mathrm{e}^{\mathrm{i} \theta_{1}(x, t)} \psi_{1}(x-v t), \ldots, \mathrm{e}^{\mathrm{i} \theta_{N}(x, t)} \psi_{N}(x-v t)\right) \tag{4.3}
\end{equation*}
$$

is a solution of (1.1). Such potentials may be found in the class of the so-called shape-invariant potentials [1,3,5].

4.1. Shape-invariant potentials

For the reader's convenience we review basic general aspects of shape-invariant potentials. Let Λ be a subset of \boldsymbol{R} and $\left\{W_{\lambda}\right\}_{\lambda \in \Lambda} \subset C^{\infty}(\boldsymbol{R} \rightarrow \boldsymbol{R})$. We introduce linear operators

$$
\begin{equation*}
A(\lambda):=-\frac{\mathrm{d}}{\mathrm{~d} x}+W_{\lambda} \quad A(\lambda)^{+}:=\frac{\mathrm{d}}{\mathrm{~d} x}+W_{\lambda} \tag{4.4}
\end{equation*}
$$

and define

$$
\begin{equation*}
H_{+}(\lambda):=A(\lambda)^{+} A(\lambda) \quad H_{-}(\lambda):=A(\lambda) A(\lambda)^{+} \tag{4.5}
\end{equation*}
$$

We have

$$
\begin{equation*}
H_{ \pm}(\lambda)=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+V_{\lambda}^{ \pm} \tag{4.6}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{\lambda}^{ \pm}:=W_{\lambda}^{2} \pm W_{\lambda}^{\prime} \tag{4.7}
\end{equation*}
$$

In the context of supersymmetric quantum mechanics [6], the function W_{λ} and the pair $\left(H_{+}(\lambda), H_{-}(\lambda)\right)$ are called a superpotential and a supersymmetric Hamiltonian respectively.

We assume the following hypothesis.

Hypothesis (\boldsymbol{W}). There exist mappings $f: \Lambda \rightarrow \Lambda$ and $F: f(\Lambda) \rightarrow \boldsymbol{R}$ such that for all $\lambda \in \Lambda$

$$
\begin{equation*}
V_{f(\lambda)}^{+}+F(f(\lambda))=V_{\lambda}^{-} \tag{4.8}
\end{equation*}
$$

Remark 4.1. The functions $V_{\lambda}^{ \pm}$satisfying (4.8) are called shape-invariant potentials. This notion was first introduced by Gendenshteîn [3] and developed by many theoretical physicists (see, e.g., [5]). The abstract mathematical formulation extending the idea of shape-invariant potentials was given in [1].

We write as $f^{0}(\lambda):=\lambda, f^{n}(\lambda):=f\left(f^{n-1}(\lambda)\right), n \geqslant 1$.
Lemma 4.1. Assume (W). Let

$$
\begin{align*}
& E_{1}(\lambda):=0 \tag{4.9}\\
& E_{n}(\lambda):=\sum_{j=1}^{n-1} F\left(f^{j}(\lambda)\right) \quad n \geqslant 2 \tag{4.10}\\
& \psi_{1, \lambda}(x):=\mathrm{e}^{\int_{0}^{x} W_{\lambda}(y) \mathrm{d} y} \tag{4.11}\\
& \psi_{n, \lambda}:=A(\lambda)^{+} A(f(\lambda))^{+} \cdots A\left(f^{n-2}(\lambda)\right)^{+} \psi_{1, f^{n-1}(\lambda)} \quad n \geqslant 2 . \tag{4.12}
\end{align*}
$$

Then, for all $\lambda \in \Lambda$,

$$
\begin{equation*}
H_{+}(\lambda) \psi_{n, \lambda}=E_{n}(\lambda) \psi_{n, \lambda} \quad n \geqslant 1 \tag{4.13}
\end{equation*}
$$

Proof. We prove (4.13) by induction. It is easy to see that (4.13) holds for $n=1$. Suppose that (4.13) holds for some n. We have

$$
\begin{align*}
H_{+}(\lambda) \psi_{n+1, \lambda} & =A(\lambda)^{+} H_{-}(\lambda) A(f(\lambda))^{+} \cdots A\left(f^{n-1}(\lambda)\right)^{+} \psi_{1, f^{n}(\lambda)} \\
& =A(\lambda)^{+} H_{-}(\lambda) \psi_{n, f(\lambda)} \tag{4.14}
\end{align*}
$$

By hypothesis (W), we have

$$
\begin{equation*}
H_{-}(\lambda)=H_{+}(f(\lambda))+F(f(\lambda)) . \tag{4.15}
\end{equation*}
$$

Putting this equation into (4.14) and using the induction hypothesis (4.13), we have

$$
H_{+}(\lambda) \psi_{n+1, \lambda}=\left[E_{n}(f(\lambda))+F(f(\lambda))\right] \psi_{n+1, \lambda}=E_{n+1}(\lambda) \psi_{n+1, \lambda} .
$$

Hence (4.13) also holds for $n+1$.
Lemma 4.1 implies that, under hypothesis (W), for all $n \geqslant 1$,

$$
\begin{equation*}
-\frac{\mathrm{d}^{2} \psi_{n, \lambda}}{\mathrm{~d} x^{2}}+V_{\lambda}^{+} \psi_{n, \lambda}=E_{n}(\lambda) \psi_{n, \lambda} \tag{4.16}
\end{equation*}
$$

Thus we obtain the following proposition.
Proposition 4.2. Let $N \geqslant 2$ be fixed. Assume (W). Suppose that

$$
\begin{equation*}
a V_{\lambda}^{+}(x)+\kappa\left(\sum_{j=1}^{N}\left|c_{j}\right|^{2}\left|\psi_{j, \lambda}(x)\right|^{2}\right)^{p}+K=0 \quad x \in \boldsymbol{R} \tag{4.17}
\end{equation*}
$$

with c_{j} being complex constants,

$$
\begin{equation*}
K:=b_{n}-a E_{n}(\lambda) \tag{4.18}
\end{equation*}
$$

independently of $n=1, \ldots, N$. Then

$$
\begin{equation*}
\Psi_{\lambda}(x, t):=\left(c_{1} \mathrm{e}^{\mathrm{i} \theta_{1}(x, t)} \psi_{1, \lambda}(x-v t), \ldots, c_{N} \mathrm{e}^{\mathrm{i} \theta_{N}(x, t)} \psi_{N, \lambda}(x-v t)\right) \tag{4.19}
\end{equation*}
$$

is a solution of (1.1).
4.2. Exact solutions in the case $N=2$ and $p=1$

Let $s \in \boldsymbol{R}$ and consider the case where the superpotential W_{λ} is given by

$$
\begin{equation*}
W_{\lambda}(x):=-\lambda \tanh _{q}(s x) \quad \lambda \in \boldsymbol{R} . \tag{4.20}
\end{equation*}
$$

Then the functions $V_{\lambda}^{ \pm}$defined by (4.7) take the form

$$
\begin{equation*}
V_{\lambda}^{ \pm}=-\lambda(\lambda \pm s) q \operatorname{sech}_{q}^{2}(s x)+\lambda^{2} . \tag{4.21}
\end{equation*}
$$

Let

$$
\begin{equation*}
f_{s}(\lambda)=\lambda-s \quad F_{s}(\lambda):=(\lambda+s)^{2}-\lambda^{2}=2 \lambda s+s^{2} . \tag{4.22}
\end{equation*}
$$

Then it is easy to see that

$$
\begin{equation*}
V_{f_{s}(\lambda)}^{+}+F_{s}\left(f_{s}(\lambda)\right)=V_{\lambda}^{-} . \tag{4.23}
\end{equation*}
$$

Hence, for each s, W_{λ} satisfies hypothesis (W) with $\Lambda=\boldsymbol{R}, F=F_{s}$ and $f=f_{s}$. Thus we can apply lemma 4.1 and proposition 4.2. To do this, however, we need to compute the left-hand side of (4.17) in the present case.

We only consider the simplest case $p=1$ in nonlinearity. Let

$$
\begin{equation*}
L_{\lambda, s}^{(N)}(x):=a V_{\lambda}^{+}(x)+\kappa\left(\sum_{j=1}^{N}\left|c_{j}\right|^{2}\left|\psi_{j, \lambda}(x)\right|^{2}\right)+K \tag{4.24}
\end{equation*}
$$

and

$$
\begin{equation*}
h:=\frac{1+q}{2} . \tag{4.25}
\end{equation*}
$$

In the present case, we see that

$$
\begin{align*}
& E_{n}(\lambda)=\sum_{j=1}^{n-1} F_{s}\left(f_{s}^{j}(\lambda)\right)=(n-1) s[2 \lambda-(n-1) s] \tag{4.26}\\
& \psi_{1, \lambda}(x)=h^{\lambda / s} \operatorname{sech}_{q}^{\lambda / s}(s x) \tag{4.27}\\
& \psi_{2, \lambda}(x)=(s-2 \lambda) h^{(\lambda-s) / s} \tanh _{q}(s x) \operatorname{sech}_{q}^{(\lambda-s) / s}(s x) . \tag{4.28}
\end{align*}
$$

Using this expression, we see that

$$
\begin{align*}
L_{\lambda, s}^{(2)}(x)=-a \lambda & (\lambda+s) q \operatorname{sech}_{q}^{2}(s x)+a \lambda^{2}+K \\
& +\kappa\left(\left|c_{1}\right|^{2} h^{2 \lambda / s}-\left|c_{2}\right|^{2}(2 \lambda-s)^{2} q h^{2(\lambda-s) / s}\right) \operatorname{sech}_{q}^{2 \lambda / s}(s x) \\
& +\kappa\left|c_{2}\right|^{2}(2 \lambda-s)^{2} h^{2(\lambda-s) / s} \operatorname{sech}_{q}^{2(\lambda-s) / s}(s x) \tag{4.29}
\end{align*}
$$

There are two ways to have $L_{\lambda, s}^{(2)}=0$. One of them is to take $s=\lambda$. Then $L_{\lambda, \lambda}^{(2)}=0$ if and only if

$$
\begin{align*}
& K=-\lambda^{2}\left(a+\kappa\left|c_{2}\right|^{2}\right) \tag{4.30}\\
& \kappa\left(\left|c_{1}\right|^{2} h^{2}-\left|c_{2}\right|^{2} \lambda^{2} q\right)=2 a \lambda^{2} q \tag{4.31}
\end{align*}
$$

Hence we only need take $b_{n}(n=1,2)$ as

$$
\begin{align*}
& b_{1}=-\lambda^{2}\left(a+\kappa\left|c_{2}\right|^{2}\right) \tag{4.32}\\
& b_{2}=-\kappa\left|c_{2}\right|^{2} \lambda^{2} \tag{4.33}
\end{align*}
$$

to have (4.18) for $N=2$. Thus we obtain the following theorem.
Theorem 4.3. Suppose that (4.31)-(4.33) hold. Then

$$
\begin{equation*}
\Psi(x, t)=\left(c_{1} \mathrm{e}^{\mathrm{i} \theta_{1}(x, t)} h \operatorname{sech}_{q} \lambda(x-v t),-c_{2} \lambda \mathrm{e}^{\mathrm{i} \theta_{2}(x, t)} \tanh _{q} \lambda(x-v t)\right) \tag{4.34}
\end{equation*}
$$

is a solution to equation (1.1) with $N=2$ and $p=1$.

The other way to have $L_{\lambda, s}^{(2)}=0$ is to take $s=\lambda / 2$. Let $\lambda \neq 0$. Then $L_{\lambda, \lambda / 2}^{(2)}=0$ if and only if

$$
\begin{align*}
& K=-a \lambda^{2} \tag{4.35}\\
& a q=\frac{3}{2} \kappa\left|c_{2}\right|^{2} h^{2} \tag{4.36}\\
& \left|c_{1}\right|^{2} h^{2}-\left|c_{2}\right|^{2}\left(\frac{3 \lambda}{2}\right)^{2} q=0 \tag{4.37}
\end{align*}
$$

In this case we only need to take b_{n} as

$$
\begin{equation*}
b_{1}=-a \lambda^{2} \quad b_{2}=-\frac{a \lambda^{2}}{4} \tag{4.38}
\end{equation*}
$$

to have (4.18) for $N=2$. Thus we obtain the following theorem.
Theorem 4.4. Let $\lambda \neq 0$ and suppose that (4.36)-(4.38) hold. Then
$\Psi(x, t)=\left(c_{1} \mathrm{e}^{\mathrm{i} \theta_{1}(x, t)} h^{2} \operatorname{sech}_{q}^{2} \frac{\lambda(x-v t)}{2},-\frac{3}{2} \lambda h c_{2} \mathrm{e}^{\mathrm{i} \theta_{2}(x, t)} \tanh _{q} \frac{\lambda(x-v t)}{2} \operatorname{sech}_{q} \frac{\lambda(x-v t)}{2}\right)$
is a solution of equation (1.1) with $N=2$ and $p=1$.

4.3. Exact solutions in the case $N=3$ and $p=1$

We next consider the case $N=3$ and $p=1$. We have
$\psi_{3, \lambda}(x)=(3 s-2 \lambda) h^{(\lambda-2 s) / s}\left\{q(2 \lambda-s) \operatorname{sech}_{q}^{\lambda / s}(s x)-2(\lambda-s) \operatorname{sech}_{q}^{(\lambda-2 s) / s}(s x)\right\}$.
Hence we obtain

$$
\begin{align*}
L_{\lambda, s}^{(3)}(x)=a \lambda^{2} & +K-a \lambda(\lambda+s) q \operatorname{sech}_{q}^{2}(s x) \\
& +\kappa\left\{\left|c_{1}\right|^{2} h^{2 \lambda} / s-\left|c_{2}\right|^{2}(2 \lambda-s)^{2} q h^{2(\lambda-s) / s}\right. \\
& \left.+\left|c_{3}\right|^{2} h^{2(\lambda-2 s) / s} q^{2}(2 \lambda-s)^{2}\right\} \operatorname{sech}_{q}^{2 \lambda / s}(s x) \\
& +\kappa\left\{\left|c_{2}\right|^{2}(2 \lambda-s)^{2} h^{2(\lambda-s) / s}-4\left|c_{3}\right|^{2} h^{2(\lambda-2 s) / s}(2 \lambda-s)(\lambda-s)\right\} \\
& \times \operatorname{sech}_{q}^{2(\lambda-s) / s}(s x)+4 \kappa\left|c_{3}\right|^{2}(\lambda-s)^{2} h^{2(\lambda-2 s) / s} \operatorname{sech}_{q}^{2(\lambda-2 s) / s}(s x) . \tag{4.41}
\end{align*}
$$

As in the preceding case $N=2$, there are two choices for s that give $L_{\lambda, s}^{(3)}=0$. One is to take $s=\lambda$. In this case we obtain the following theorem.

Theorem 4.5. Suppose that b_{1} and b_{2} are given by (4.32) and (4.33) respectively, $b_{3}=b_{1}$ and

$$
\begin{equation*}
\kappa\left(\left|c_{1}\right|^{2} h^{2}-\left|c_{2}\right|^{2} \lambda^{2} q+\left|c_{3}\right|^{2} h^{-2} q^{2} \lambda^{2}\right)=2 a \lambda^{2} q \tag{4.42}
\end{equation*}
$$

Then

$$
\begin{gather*}
\Psi(x, t)=\left(c_{1} \mathrm{e}^{\mathrm{i} \theta_{1}(x, t)} h \operatorname{sech}_{q} \lambda(x-v t),-c_{2} \lambda \mathrm{e}^{\mathrm{i} \theta_{2}(x, t)} \tanh _{q} \lambda(x-v t),\right. \\
\left.c_{3} \mathrm{e}^{\mathrm{i} \theta_{3}(x, t)} \lambda^{2} h^{-1} q \operatorname{sech}_{q} \lambda(x-v t)\right) \tag{4.43}
\end{gather*}
$$

is a solution of equation (1.1) with $N=3$ and $p=1$.
The other choice is to take $s=\lambda / 3$. In this case we obtain the following theorem.

Theorem 4.6. Suppose that

$$
\begin{align*}
& b_{1}=-a \lambda^{2} \tag{4.44}\\
& b_{2}=-\frac{4}{9} a \lambda^{2} \tag{4.45}\\
& b_{3}=-\frac{1}{9} a \lambda^{2} \tag{4.46}\\
& \left|c_{1}\right|^{2} h^{4}-\left|c_{2}\right|^{2}\left(\frac{5}{3} \lambda\right)^{2} q h^{2}+\left|c_{3}\right|^{2} q^{2}\left(\frac{5}{3} \lambda\right)^{2}=0 \tag{4.47}\\
& \left|c_{2}\right|^{2} h^{2}=\frac{8}{3}\left|c_{3}\right|^{2} q \lambda \tag{4.48}\\
& a q=\frac{4}{3} \kappa\left|c_{3}\right|^{2} h^{2} . \tag{4.49}
\end{align*}
$$

Then

$$
\begin{align*}
& \Psi(x, t)=\left(c_{1} \mathrm{e}^{\mathrm{i} \theta_{1}(x, t)} h^{3} \operatorname{sech}_{q}^{3} \frac{\lambda(x-v t)}{3},\right. \\
& \quad-\frac{5}{3} c_{2} \mathrm{e}^{\mathrm{i} \theta_{2}(x, t)} h^{2} \lambda \tanh _{q} \frac{\lambda(x-v t)}{3} \operatorname{sech}_{q}^{2} \frac{\lambda(x-v t)}{3}, \\
&\left.\frac{1}{3} \lambda^{2} h c_{3} \mathrm{e}^{\mathrm{i} \theta_{3}(x, t)}\left[5 q \operatorname{sech}_{q}^{3} \frac{\lambda(x-v t)}{3}-4 \operatorname{sech}_{q} \frac{\lambda(x-v t)}{3}\right]\right) \tag{4.50}
\end{align*}
$$

is a solution of equation (1.1) with $N=3$ and $p=1$.
In the same manner as above, one may continue to calculate $L_{\lambda, s}^{(N)}$ for $N \geqslant 4$ and check whether there exist constants $c_{j}, j=1, \ldots, N$, such that $L_{\lambda, s}^{(N)}=0$. It is an interesting problem to show whether or not, for all $N \geqslant 4$, there exist constants $c_{j}, j=1, \ldots, N$ such that $L_{\lambda, s}^{(N)}=0$, but this problem is left open.

Acknowledgment

Supported by the Grant-in-Aid No 11440036 for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan.

References

[1] Arai A 1991 Exactly solvable supersymmetric quantum mechanics J. Math. Anal. Appl. 158 63-79
[2] Arai A 2000 Supersymmetric methods for constructing soliton-type solutions to multi-component nonlinear Schrödinger and Klein-Gordon equations Hokkaido University Preprint Series in Mathematics No 508
[3] Gendenshteîn L E 1983 Derivation of exact spectra of the Schrödinger equation by means of supersymmetry JETP Lett. 38 356-9
[4] Hrubý J 1989 On SSQM and the $U(N)$ nonlinear Schrödinger equation J. Phys. A: Math. Gen. 22 1807-18
[5] Lévai G 1989 A search for shape-invariant potentials J. Phys. A: Math. Gen. 22 689-702
[6] Witten E 1981 Dynamical breaking of supersymmetry Nucl. Phys. B 185 513-54

