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Abstract
We present some exact solutions of a multi-component nonlinear partial
differential equation which unifies nonlinear Schrödinger and Klein–Gordon
equations in the two-dimensional space–time.
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1. Introduction

In this paper we consider the following nonlinear partial differential equation for a CN -valued
function:

�(x, t) = (�1(x, t), . . . , �N(x, t))

on the two-dimensional space–time R2 = {(x, t)|x, t ∈ R} (N � 1):

iα
∂�(x, t)

∂t
+ β

∂�(x, t)

∂x
+ γ

∂2�(x, t)

∂t2
+
∂2�(x, t)

∂x2

+ρ�(x, t) + κ|�(x, t)|2p�(x, t) = 0 (1.1)

where α, β, γ, ρ, κ ∈ C (κ �= 0), p ∈ R \ {0} (not necessarily an integer) are constants and

|�(x, t)| :=
√∑N

n=1 |�n(x, t)|2. Equation (1.1) unifies N -component nonlinear Schrödinger

and Klein–Gordon equations on R2. The basic idea of the method taken in the present paper
comes from a paper [4] which discusses a use of supersymmetric quantum mechanics in
constructing soliton-type solutions to a multi-component nonlinear Schrödinger equation onR2

i
∂�(x, t)

∂t
+
∂2�(x, t)

∂x2
+ κ|�(x, t)|2�(x, t) = 0 (1.2)

in the case of (1.1) with p = 1, α = 1, β = 0, γ = 0, ρ = 0. We pursue this method to
find exact solutions of (1.1). In this paper we present exact solutions of (1.1) in the following
cases: (i) N = 1, p ∈ R \ {0,−1} arbitrary; (ii) N = 2, p = 1; (iii) N = 3, p = 1.
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2. Preliminaries

We seek solutions � = (�1, . . . , �N) of (1.1) in the form of a travelling wave

�n(x, t) = eiθn(x,t)ψn(x − vt) n = 1, . . . , N (2.1)

where v ∈ R is a constant,

θn(x, t) := µnx − ωnt (2.2)

with µn, ωn ∈ R being constants, and ψn is a twice continuously differentiable function on R.
We assume that µn and ωn satisfy

µn = 1

2i
(iαv − 2iωnvγ − β) (2.3)

2ωnvIm γ = vIm α + Re β. (2.4)

We set

a := 1 + γ v2 (2.5)

bn := αωn − γω2
n − µ2

n + ρ + iβµn. (2.6)

We only consider the case a �= 0.
The following lemma is easily shown.

Lemma 2.1. The function � := (�1, . . . , �N) with �n given by (2.1) (n = 1, . . . , N) is a
solution of (1.1) if and only if, for each n = 1, . . . , N ,

a
d2ψn(x)

dx2
+ κ

( N∑
j=1

|ψj(x)|2
)p

ψn(x) + bnψn(x) = 0. (2.7)

By lemma 2.1, the problem is reduced to finding solutions (ψ1, . . . , ψN) of equation (2.7).

3. The case N = 1

In this case we set

θ(x) := θ1(x) b := b1. (3.1)

A well known exact solution of (2.7) in the case N = 1 and p = 1 is given by f1(x) :=√
2a/κ sech(x) with the condition a +b = 0, so that F1(x, t) := eiθ(x,t)f1(x−vt) is a solution

to equation (1.1) with N = 1, p = 1 and a + b = 0. We present other exact solutions of
equation (1.1).

We try to find solutions of (2.7) with N = 1 in the form

ψ(x) = ceφ(x) (3.2)

where c �= 0 is a constant. By direct computation, ψ is a solution of (2.7) with N = 1 if and
only if

a
(
φ′′(x) + φ′(x)2

)
+ κ|c|2pe2pφ(x) + b = 0. (3.3)

It is not so hard to find solutions of (3.3) [2, appendix]. We only present results on solutions
of (3.3).

Let c �= 0 be a complex constant and C be a real constant. We introduce a function gp
on R by

gp(y) :=




− κ|c|2p
a(1 + p)

e2py + Ce−2y − b

a
p �= −1(

C − 2κ

|c|2a y
)

e−2y − b

a
p = −1, y ∈ R.

(3.4)
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Proposition 3.1. Let Gp be a primitive function of either 1/
√
gp or −1/

√
gp on

D+ := {y ∈ R|gp(y) > 0} (3.5)

and G−1
p denote the inverse function of Gp.

(i) For every open interval J ⊂ D+,

�(x, t) := ceiθ(x,t)eG
−1
p (x−vt) (3.6)

is a solution of equation (1.1) with N = 1 on {(x, t)|x − vt ∈ Gp(J )}.
(ii) Suppose that there exists an open interval J ⊂ D+ such that Gp(J ) = (0, L) with L > 0

or L = ∞ and

G−1
p (0) := lim

x↓0
G−1

p (x) exists and gp(G
−1
p (0)) = 0. (3.7)

Let

φp(x) :=
{
G−1

p (x) x ∈ [0, L)

G−1
p (−x) x ∈ (−L, 0).

(3.8)

Then

�(x, t) := ceiθ(x,t)eφp(x−vt) (3.9)

is a solution to equation (1.1) with N = 1 on {(x, t)|x − vt ∈ (−L,L)}.

Proof. (i) It is straightforward to check that φ(x) = G−1
p (x) is a solution of equation (3.3).

(ii) Similar to part (i). �

Some solutions given in proposition 3.1 may be global in (x, t) and have explicit
representations. To write down some of them, we recall q-deformed hyperbolic functions
which were introduced in [1]:

sinhq x := ex − qe−x

2
coshq x := ex + qe−x

2
(3.10)

tanhq x := sinhq x

coshq x
sechqx := 1

coshq x
x ∈ R (3.11)

where q > 0 is a deformation parameter. Note that, if q �= 1, then sinhq x is not odd and
coshq x is not even:

sinhq(−x) = −q sinh1/q x coshq(−x) = q cosh1/q x x ∈ R. (3.12)

The following formulae can be easily proven:

(sinhq x)
′ = coshq x (3.13)

(coshq x)
′ = sinhq x (3.14)

cosh2
q x − sinh2

q x = q (3.15)

(tanhq x)
′ = q sech2

qx (3.16)

(sechqx)
′ = −(tanhq x)(sechqx) (3.17)

tanh2
q x = 1 − q sech2

qx. (3.18)
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Theorem 3.2. Let p �= 0. Suppose that κ ∈ R and s ∈ R.

a(1 + p)

κ
> 0 b + as2 = 0. (3.19)

Then the function

�(x, t) =
(
a(1 + p)qs2

κ

)1/2p

eiθ(x,t) sech1/p
q [sp(x − vt)] (3.20)

is a solution of equation (1.1).

Theorem 3.3. Let b = 2as2 and a/κ < 0. Then

�(x, t) = −s
√

−2a/κeiθ(x,t) tanhq s(x − vt) (3.21)

is a solution of equation (1.1) with N = 1 and p = 1.

4. Exact solutions in the case N � 2

In this case, we follow an idea in [4]; namely, we try to find a potential V : R → R having
the following properties (i)–(iii): (i) the one-dimensional Schrödinger operator −d2/dx2 + V

admits N eigenfunctions ψ1, . . . , ψN with eigenvalues E1, . . . , EN respectively:

−d2ψn(x)

dx2
+ V (x)ψn(x) = Enψn(x) (4.1)

(ii) K := bn − aEn is independent of n = 1, . . . , N and (iii) the eigenfunctions recover the
potential V in the sense that

κ

( N∑
n=1

|ψn(x)|2
)p

+ K = −aV (x). (4.2)

If such a V exists, then (ψ1(x), . . . , ψN(x)) satisfies (2.7) and hence

�(x) = (
eiθ1(x,t)ψ1(x − vt), . . . , eiθN (x,t)ψN(x − vt)

)
(4.3)

is a solution of (1.1). Such potentials may be found in the class of the so-called shape-invariant
potentials [1, 3, 5].

4.1. Shape-invariant potentials

For the reader’s convenience we review basic general aspects of shape-invariant potentials.
Let - be a subset of R and {Wλ}λ∈- ⊂ C∞(R → R). We introduce linear operators

A(λ) := − d

dx
+ Wλ A(λ)+ := d

dx
+ Wλ (4.4)

and define

H+(λ) := A(λ)+A(λ) H−(λ) := A(λ)A(λ)+. (4.5)

We have

H±(λ) = − d2

dx2
+ V ±

λ (4.6)

where

V ±
λ := W 2

λ ± W ′
λ. (4.7)

In the context of supersymmetric quantum mechanics [6], the function Wλ and the pair
(H+(λ),H−(λ)) are called a superpotential and a supersymmetric Hamiltonian respectively.

We assume the following hypothesis.
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Hypothesis (W ). There exist mappings f : - → - and F : f (-) → R such that for all
λ ∈ -

V +
f (λ) + F(f (λ)) = V −

λ . (4.8)

Remark 4.1. The functions V ±
λ satisfying (4.8) are called shape-invariant potentials. This

notion was first introduced by Gendenshteîn [3] and developed by many theoretical physicists
(see, e.g., [5]). The abstract mathematical formulation extending the idea of shape-invariant
potentials was given in [1].

We write as f 0(λ) := λ, f n(λ) := f (f n−1(λ)), n � 1.

Lemma 4.1. Assume (W). Let

E1(λ) := 0 (4.9)

En(λ) :=
n−1∑
j=1

F(f j (λ)) n � 2 (4.10)

ψ1,λ(x) := e
∫ x

0 Wλ(y) dy (4.11)

ψn,λ := A(λ)+A(f (λ))+ · · ·A(f n−2(λ))+ψ1,f n−1(λ) n � 2. (4.12)

Then, for all λ ∈ -,

H+(λ)ψn,λ = En(λ)ψn,λ n � 1. (4.13)

Proof. We prove (4.13) by induction. It is easy to see that (4.13) holds for n = 1. Suppose
that (4.13) holds for some n. We have

H+(λ)ψn+1,λ = A(λ)+H−(λ)A(f (λ))+ · · ·A(f n−1(λ))+ψ1,f n(λ)

= A(λ)+H−(λ)ψn,f (λ). (4.14)

By hypothesis (W), we have

H−(λ) = H+(f (λ)) + F(f (λ)). (4.15)

Putting this equation into (4.14) and using the induction hypothesis (4.13), we have

H+(λ)ψn+1,λ = [En(f (λ)) + F(f (λ))]ψn+1,λ = En+1(λ)ψn+1,λ.

Hence (4.13) also holds for n + 1. �
Lemma 4.1 implies that, under hypothesis (W), for all n � 1,

−d2ψn,λ

dx2
+ V +

λ ψn,λ = En(λ)ψn,λ. (4.16)

Thus we obtain the following proposition.

Proposition 4.2. Let N � 2 be fixed. Assume (W). Suppose that

aV +
λ (x) + κ

( N∑
j=1

|cj |2|ψj,λ(x)|2
)p

+ K = 0 x ∈ R (4.17)

with cj being complex constants,

K := bn − aEn(λ) (4.18)

independently of n = 1, . . . , N . Then

�λ(x, t) := (
c1eiθ1(x,t)ψ1,λ(x − vt), . . . , cNeiθN (x,t)ψN,λ(x − vt)

)
(4.19)

is a solution of (1.1).
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4.2. Exact solutions in the case N = 2 and p = 1

Let s ∈ R and consider the case where the superpotential Wλ is given by

Wλ(x) := −λ tanhq(sx) λ ∈ R. (4.20)

Then the functions V ±
λ defined by (4.7) take the form

V ±
λ = −λ(λ ± s)q sech2

q(sx) + λ2. (4.21)

Let

fs(λ) = λ − s Fs(λ) := (λ + s)2 − λ2 = 2λs + s2. (4.22)

Then it is easy to see that

V +
fs(λ)

+ Fs(fs(λ)) = V −
λ . (4.23)

Hence, for each s, Wλ satisfies hypothesis (W) with - = R, F = Fs and f = fs . Thus
we can apply lemma 4.1 and proposition 4.2. To do this, however, we need to compute the
left-hand side of (4.17) in the present case.

We only consider the simplest case p = 1 in nonlinearity. Let

L
(N)
λ,s (x) := aV +

λ (x) + κ

( N∑
j=1

|cj |2|ψj,λ(x)|2
)

+ K (4.24)

and

h := 1 + q

2
. (4.25)

In the present case, we see that

En(λ) =
n−1∑
j=1

Fs(f
j
s (λ)) = (n − 1)s[2λ − (n − 1)s] (4.26)

ψ1,λ(x) = hλ/s sechλ/sq (sx) (4.27)

ψ2,λ(x) = (s − 2λ)h(λ−s)/s tanhq(sx) sech(λ−s)/s
q (sx). (4.28)

Using this expression, we see that

L
(2)
λ,s(x) = −aλ(λ + s)q sech2

q(sx) + aλ2 + K

+κ
(|c1|2h2λ/s − |c2|2(2λ − s)2qh2(λ−s)/s

)
sech2λ/s

q (sx)

+κ|c2|2(2λ − s)2h2(λ−s)/s sech2(λ−s)/s
q (sx). (4.29)

There are two ways to have L(2)
λ,s = 0. One of them is to take s = λ. Then L

(2)
λ,λ = 0 if and

only if

K = −λ2(a + κ|c2|2) (4.30)

κ(|c1|2h2 − |c2|2λ2q) = 2aλ2q. (4.31)

Hence we only need take bn (n = 1, 2) as

b1 = −λ2(a + κ|c2|2) (4.32)

b2 = −κ|c2|2λ2 (4.33)

to have (4.18) for N = 2. Thus we obtain the following theorem.

Theorem 4.3. Suppose that (4.31)–(4.33) hold. Then

�(x, t) = (
c1eiθ1(x,t)h sechqλ(x − vt), −c2λeiθ2(x,t) tanhq λ(x − vt)

)
(4.34)

is a solution to equation (1.1) with N = 2 and p = 1.
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The other way to have L
(2)
λ,s = 0 is to take s = λ/2. Let λ �= 0. Then L

(2)
λ,λ/2 = 0 if and

only if

K = −aλ2 (4.35)

aq = 3
2κ|c2|2h2 (4.36)

|c1|2h2 − |c2|2
(

3λ

2

)2

q = 0. (4.37)

In this case we only need to take bn as

b1 = −aλ2 b2 = −aλ2

4
(4.38)

to have (4.18) for N = 2. Thus we obtain the following theorem.

Theorem 4.4. Let λ �= 0 and suppose that (4.36)–(4.38) hold. Then

�(x, t) =
(
c1eiθ1(x,t)h2 sech2

q

λ(x − vt)

2
,−3

2
λhc2eiθ2(x,t) tanhq

λ(x − vt)

2
sechq

λ(x − vt)

2

)
(4.39)

is a solution of equation (1.1) with N = 2 and p = 1.

4.3. Exact solutions in the case N = 3 and p = 1

We next consider the case N = 3 and p = 1. We have

ψ3,λ(x) = (3s − 2λ)h(λ−2s)/s
{
q(2λ − s) sechλ/sq (sx) − 2(λ − s) sech(λ−2s)/s

q (sx)
}
. (4.40)

Hence we obtain

L
(3)
λ,s(x) = aλ2 + K − aλ(λ + s)q sech2

q(sx)

+κ
{|c1|2h2λ/s − |c2|2(2λ − s)2qh2(λ−s)/s

+|c3|2h2(λ−2s)/sq2(2λ − s)2
}

sech2λ/s
q (sx)

+κ
{|c2|2(2λ − s)2h2(λ−s)/s − 4|c3|2h2(λ−2s)/s(2λ − s)(λ − s)

}
×sech2(λ−s)/s

q (sx) + 4κ|c3|2(λ − s)2h2(λ−2s)/s sech2(λ−2s)/s
q (sx). (4.41)

As in the preceding case N = 2, there are two choices for s that give L(3)
λ,s = 0. One is to

take s = λ. In this case we obtain the following theorem.

Theorem 4.5. Suppose that b1 and b2 are given by (4.32) and (4.33) respectively, b3 = b1 and

κ(|c1|2h2 − |c2|2λ2q + |c3|2h−2q2λ2) = 2aλ2q. (4.42)

Then

�(x, t) = (
c1eiθ1(x,t)h sechqλ(x − vt),−c2λeiθ2(x,t) tanhq λ(x − vt),

c3eiθ3(x,t)λ2h−1q sechqλ(x − vt)
)

(4.43)

is a solution of equation (1.1) with N = 3 and p = 1.

The other choice is to take s = λ/3. In this case we obtain the following theorem.
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Theorem 4.6. Suppose that

b1 = −aλ2 (4.44)

b2 = − 4
9aλ

2 (4.45)

b3 = − 1
9aλ

2 (4.46)

|c1|2h4 − |c2|2( 5
3λ)

2qh2 + |c3|2q2( 5
3λ)

2 = 0 (4.47)

|c2|2h2 = 8
3 |c3|2qλ (4.48)

aq = 4
3κ|c3|2h2. (4.49)

Then

�(x, t) =
(
c1eiθ1(x,t)h3 sech3

q

λ(x − vt)

3
,

−5

3
c2eiθ2(x,t)h2λ tanhq

λ(x − vt)

3
sech2

q

λ(x − vt)

3
,

1

3
λ2hc3eiθ3(x,t)

[
5qsech3

q

λ(x − vt)

3
− 4 sechq

λ(x − vt)

3

])
(4.50)

is a solution of equation (1.1) with N = 3 and p = 1.

In the same manner as above, one may continue to calculate L
(N)
λ,s for N � 4 and check

whether there exist constants cj , j = 1, . . . , N , such that L(N)
λ,s = 0. It is an interesting

problem to show whether or not, for all N � 4, there exist constants cj , j = 1, . . . , N such
that L(N)

λ,s = 0, but this problem is left open.
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